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The motion of a disk rising steadily along the axis in a rotating fluid between two 
infinite plates is considered. In the limit of zero Rossby number and with the disk in 
the middle position, the boundary value problem based on the linear, viscous equations 
of motion is reduced to a system of dual-integral equations which renders ‘exact’ 
solutions for arbitrary values of the Taylor number, Tu, and disk-to-wall distance, H 
(scaled by the radius of the disk). The investigation is focused on the drag and on the 
flow field when To is large (but finite) for various H .  Comparisons with previous 
asymptotic results for ‘short’ and ‘long’ containers, and with the preceding 
unbounded-configuration ‘exact’ solution, provide both confirmation and novel 
insights. 

In particular, it is shown that the ‘free’ Taylor column on the particle appears for 
H > 0.08 Tu and attains its fully developed features when H > 0.25 Ta (approxi- 
mately). The present drag calculations improve the compatibility of the linear 
theory with Maxworthy’s (1968) experiments in short containers, but for the long 
container the claimed discrepancy with experiments remains unexplained. 

1. Introduction 
The present study is an extension of the investigation by Vedensky & Ungarish (1994, 

hereafter referred to as VU) concerning the parallel-to-axis (‘vertical’) motion of a 
disk in an unbounded rotating fluid. The obvious deficiency of that analysis is the 
omission of the practically unavoidable influence of the boundaries, especially of the 
‘horizontal’ walls. When the Taylor number, Tu, is large these walls evidently modify 
or suppress the tendency of the flow field to form the long ‘free’ Taylor columns 
detected in the unbounded configuration. The present work incorporates the parallel- 
to-disk boundaries in the ‘exact’ solution of the full linear-theory equations of motion 
and focuses on the flow field and drag features for Tu B 1. 

The basic configuration is shown in figure 1 : the disk, of radius u*, is moving with 
constant velocity v* toward the upper boundary; we consider exactly the midway 
instance, i.e. both walls are at distance H* from the disk. The walls and the far-from- 
the-disk fluid rotate with constant O* around the axis of symmetry. Asterisks denote 
dimensional variables. We use a cylindrical r ,  8, z coordinate system rotating with Q* 
around I in which o* = {u*,u*,  w * }  is the velocity vector. Hereafter t* is time, p* and 
v* are the density and kinematic viscosity of the fluid, P* is the reduced pressure and 
D* the drag force on the particle. 

t To whom correspondence should be addressed. 
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FIGURE 1.  Configuration. 

The analysis is conveniently performed in dimensionless form by employing the 
following scalings: 

* * *  
{r*,  t* ,  v * ,  P*, D*) = V*v,-  P ,  V*u*p*a*D 

a 

Now the equations of conservation of mass and momentum read 

v - v  = 0,  (2) 

(3) 
av 
at 

(Ro Ta) - + (Ro Ta) v .  V v  + 2Ta(2 x v )  = - V P -  V x V x v .  

The independent dimensionless parameters governing the flow field generated by the 
motion of the particle are 

H* H = -  
SZ*a*’ a* 
V* 

R o = -  
a*2Q* 

Ta = - 
u* ’ (4) 

The Taylor number, Tu, expresses the typical ratio of the Coriolis to the viscous forces 
in the fluid (Tu is actually the inverse of the Ekman number of the particle). The 
Rossby number, Ro, a ratio of the convective to the Coriolis accelerations, estimates 
the relative importance of nonlinear terms. 

Setting Ro = 0 in (3) yields the important linear steady formulation, which we adopt 
here. 



A rising disk in a rotating axially boundedjluid 3 

The boundary conditions are no penetration and no slip on the particle and on the 
walls z = f H .  In the unbounded configuration the present conditions at z = f H are 
replaced by unperturbed solid-body rotation at i 2 + r 2 +  00. It is expected that the 
present analysis for finite H recovers the unbounded case when H - +  m. In general, a 
torque-free rising disk rotates slightly, but this rotation vanishes in the symmetric 
configuration under consideration. 

To be specific, in the present study we shall consider Ta % 1 flows and configurations 
with H > lO/Ta'/' (i.e. there is some 'core' outside the developed Ekman layers whose 
typical thickness is 3/Ta''2 each). 

For the relevant configuration, two different ranges of H have received theoretical 
consideration in the literature: H 6 Tall', roughly referred to as a short container, by 
Moore & Saffman (1968, 1969); H % Tall', hereafter referred to as a long container, 
by Hocking, Moore & Walton (1978). In the first range analytical progress was 
attained by decomposing the flow in the geostrophic cores, Ekman ('horizontal') 
boundary layers and Stewartson ('vertical') shear layers. It was shown that the flow 
field is dominated by the Ekman layers, the swirl velocities in the up- and downstream 
regions are O( Tall2) and the drag is O( Ta3I2). The drag force on a disk is about 22 % 
higher than on a sphere. In the analysis of the second range the Ekman layer influence, 
expected to be minor, was neglected. It turned out that, like in the unbounded 
configuration, the swirl velocities in the up- and downstream regions are O( 1) and the 
drag is O(Ta); the drag forces on a disk and a sphere are the same. 

The above-mentioned studies leave open some important questions. First, the range 
of applicability is established only asymptotically with respect to large Ta. It is not 
clear in practice which particular values of Ta can be considered sufficiently large and 
what error shows up for a given set of Ta, H .  Moreover, the solutions certainly do not 
span the whole range of H and do not give indications of the behaviour in the 
intermediate (moderately long container) domain. In this intermediate range the swirl 
velocity varies from O( Tu' /~ )  to O( 1) as H varies from the lower to the upper values. 

Secondly, the experimental verifications of the drag by Maxworthy (for spherical 
particles) revealed discrepancies with the analytical results that have not been 
satisfactorily explained. 

Thirdly, the analysis of the flow field in the first range of H was closed by an ad hoc 
assumption of Kutta-Joukowsky type; therefore independent verifications of the 
results are desirable. In particular, it was predicted on this basis that the meridional 
velocities in the inner Stewartson layer are higher than necessary for the O( 1) volume 
flux transport ; actually, an O( Ta"") recirculation was predicted. This peculiar feature 
has not been verified. 

Fourth, in the unbounded configuration when Ta > 37 a distinct region ('bubble') 
of recirculation appears near the body; this becomes the main part of the 'free' Taylor 
column for large Ta, as reported by VU for a disk and by Tanzosh & Stone (1 994) for 
a sphere. The expectedly critical influence of H on this flow-field feature is worthy of 
investigation. 

The present study endeavours to close the above-mentioned gaps in knowledge via 
an 'exact' solution by the dual-integral equations method. Essentially, the approach is 
correct for arbitrary values of Ta and H .  However, the final computational procedure 
is developed for H Tall2 > 10 and the computations appear to be reliable up to Ta x 
30000. 

The outline of this paper is as follows. In $2 the governing equations of motion are 
reformulated as dual integral equations, from which the formal solution of the problem 
is obtained. Analysis of the drag and the flow field for small and moderate H is 
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performed in $3. In $4 attention is focused on the large-H case. Concluding remarks 
are presented in $ 5 .  

2. Formal solution 

2.1. Governing equations 
In view of the axial symmetry, the scalar form of the governing equations (2) 
and (3) is 

a(ru) dw -+- = 0. 
rar az 

Here r and z are the radius and axial coordinate in a cylindrical frame attached to the 
centre of the disk and rotating with the walls. 

To close the boundary value problem the conditions on the disk and the walls should 
be specified. Since the equations do not contain convection terms and the domain is 
fore-aft symmetric, the torque-free disk will not rotate relative to the fluid. So 

2.2. The Hankel-transform formulation 
Since the governing equations are the same as for the unbounded case (see VU, §2), the 
general solution, which was determined on the basis of the Hankel transform and 
determining of the eigenvalues of the system, is already available. The only difference 
is that now, because the domain is bounded in z ,  we cannot discard the terms which 
increase exponentially with the distance from the disk (see (33) and (34) in VU). 

Let p be the variable of the Hankel transform (not to be confused with the pressure 
P). The flow field can be expressed in terms of the known A,, A, and A, (the solutions 
to the characteristic equation A3 + (4Ta2/p4) ( A  + 1) = 0, see Appendix A), and the 
unknown functions of p aI, a2, pl, p2, y1 and y2, which should be determined by the 
boundary conditions. 

The solution for the upstream half-space ( z  >, 0) reads 

v(r , z )  = pJ,(rp)[a,sinh(p(l +Al)1/2z)+a2cosh(p(l +A1)1/2z) 1: 
+PI sinh ( p (  1 + A2) I I2  z )  + p2 cosh ( p (  1 + z )  

+ y1 sinh ( p (  1 + A3)l/' z)  + y2 cosh ( p (  1 + A3)l / ,  z)] dp, 
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+ A l  a2 cosh ( p (  1 + A,)"2 z )  + A2P1 sinh ( p (  1 + A2)1/2 Z )  

+ A, P2 cash (p (  1 + A2) l l2  z )  + A, y1 sinh (p (  1 + z )  

+A3 y2 cosh (p(  1 + z)] dp, (12) 

For the stream function, +(r , z ) ,  prescribing + = 0 on the axis and on the disk, on 
account of (1 3) one obtains 

The pressure in the plane of the disk, in view of (3, (1 1) and (12) and the prescription 
P = 0 at r 2 + z 2 4  03, reads 

P(r , z  = 0') = p 4 J , ( r p ) [ a 2 A ~ + ~ 2 A ~ + y 2 A ~ ] d p .  (1 5 )  

The form of the governing equations and the symmetry of the configuration suggest 

(16a, b) 

(16c, d) 

Essentially these conditions are not independent; (1 6 c) immediately follows from (1 6a) 
and (8), and (16d) results from (16a), (16b) and (5).  Consequently, it is sufficient to 
develop the solution for the half-space z 2 0. 

symmetry relationships about the plane of the disk in the flow field considered, i.e. 

u(r, z )  = - u(r, - z),  u(r, z )  = - u(r, - z) ,  

w(r,  z) = w(r, - z ) ,  P(r, z)  = - P(r,  - z) .  
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To evaluate the entire flow field the six unknown functions of p al. a2, /I1, P2, y l ,  and 
y 2  are to be determined; Ta and H enter as parameters. To find these functions we 
apply symmetry and boundary conditions on the general solution. This we perform 
in two stages: (u) we express in terms of a, the other five functions, as shown in $2.3; 
(b )  we obtain and solve a dual-integral equation for a,, as detailed in $2.4. 

2.3. Reducing the number of functions sought 
We notice that the symmetry condition (16) actually implies that 

u(r, z = 0 )  = v(r, z = 0 )  = 0 (17) 

for any r .  The fulfillment of ( 1  7) for any r imposes, via ( 1  1 ) and (1 2), 

a2+Pa+ y2 = 0, (18) 

A1 + A z p , + A 3  7 2  = 0. (19) 

Solving for P2 and y2 in terms of a2, 

reduces the number of unknown functions to four. Next, the application of the 
boundary conditions (10) on the wall z = H results, after dividing by a2 through (20), 
in the linear system of three equations with three variables a1/a2, P1/a2 and y1/a2. 

3s inh (p ( l  H)+'sinh(p(l P +A,)'l 'H)+csinh(p(l +A3)'/' H) 
a2 a2 a2 

1 cosh(p(1 +A,)"2H)+-cosh(p(1 P 2  +A,)"'H)+fiCOSh(p(I + A 3 ) " , H )  ; ( 2 1 ~ )  
a2 a2 

a 8 
A, sinh ( p (  1 + A1)I/' H) +A,  2 sinh ( p (  1 + H) + sinh ( p (  1 + h3)1/2 H) 

a2 a:! 012 

Formally, from the (21) exact expressions for al /az ,  Pl/a2 and y l / a z  as functions of 
p with Ta and H as parameters, can be obtained. However, in order to avoid the loss 
of significance and 'overflow' errors which accompany the direct solution of (2 1)  when 
H Tall2 % 1, an asymptotic approach was used. The relevant analysis, details of which 
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may be obtained from the authors or JFM Editorial Office (see also Appendix A), 
reveals 

(a)  For arbitrary p 2 0 

x (1 + O(e-" Ta1'2)), (23) 
where t ,  = tanh (( 1 + A,)'/'pH). 

(b)  For p +  cc 

Hereafter we use the approximations (22H24), together with (20), as a substitute for 
the direct solution of (21), with tight control on the error propagation. Essentially, 
system (22H24) is indeed a simple, see (20), and an excellent approximation: the error 
is beyond the fourth significant decimal digit when H Tall' > 10 and is of the order 
of the round-off unit of a 16 decimal digits (double-precision) computation when 
H Tall2 2 40. In the present work we performed calculations with 16 decimal digits, 
and considered configurations with H Ta"' 2 40.t We expect that the drag and flow field 
so computed will reproduce, within machine accuracy, the results tentatively attainable 
with the exact solution of (21). 

2.4. Dual-integral equations solution 
Now the main task is the determination of the function a2. To this end a system of dual- 
integral equations is formulated. The physical sense of these equations is the same as 
for the unbounded case. The first equation expresses the no-penetration requirement 
on the disk surface, which, by virtue of ( 1  3) for I = 0, reads 

x a , ( p , T a , H ) d p = - I  for O < r <  1. (25) 

The complementary equation is based on the pressure continuity at z = 0, r > 1, 
which, in view of (16d) reads simply 

P(r , z=O)  = 0 for r > 1 .  (26) 

With few marginal exceptions: (a)  In figure 2 H Tall2 is below 40 but still above 20 for some 
points with H < 1 .  (b)  H Tul/' zz 32 in the first line of table 1 .  
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On account of ( 1  5 )  and (20) the last equation yields 
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a,@, Ta, H) dp = 0 for r > 1. (27) 

On account of (20)  and (22) the integrands in (25) and (27) are the products of 
the 'unknown' function a 2 ( p ,  Ta, H )  and computable functions. Thus, as for the 
unbounded case, the solution a2(p) ,  with Ta and H as parameters, can be sought by 
Tranter's method. 

In general, consider the dual-integral equations 

wherefip) is the unknown function, G ( p )  is a prescribed function and A a given 
parameter. Tranter showed that the system (28)-(29) is satisfied by 

m 

AP) = P ~ - ~  C am Am+k(P),  
m=O 

where the coefficients a ,  are prescribed by the linear system 

7 1 - k  

W 

a n +  C L, , ,am = O  for n >, 1 ,  
m=O 

where 

Comparing our problem, which is described by the dual-integral equations (25) and 
(27),  with (28)-(29) it is seen that by identifying 

where 

the exact form of equations (28)-(29) is recovered. 
The function ~ ( p )  has exactly the same form as its counterpart in the unbounded 

configuration. For the preceding function, in view of (20) and (22) we obtain, within 
o ( ~ - T ~ ' I ~ H  ) accuracy, for any p 2 0, 
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However, in view of (24), (35) yields 

(38) 
which coincides with B(p) of the unbounded case. 

Thus, formally at least, for the present G ( p )  and A ,  the unknown functionflp) can 
be determined from the dual-integral equations by Tranter’s method, and subsequently 
via (34) the function a2 can be obtained. (For practical solutions the convergence and 
stability of (32H33) are essential, as discussed in the next subsection.) Next, 
application of (20) gives PZ and y2, and (21) determines al, P1, y l .  Finally, through 
(1 1)-( 13) the physical variables can be evaluated. 

However, direct calculation by means of (1 1H13) leads again, in view of (22)-(24), 
to loss of significance and ‘overflow’ errors which can be avoided by means of 
reformulation. For example, we rewrite (1 1) as follows : 

where 

a1 + a2 ep(l+n,)’/2z a2 - a1 -p(l+A,)% P I  + P z  ep(l+Az)’/2r V,(P,Z) = - +- e 
a2 a 2  a 2  

* (40) 

In view of (22H24) the sums a1 +az, B1 +PZ and y1 + yz are O(e-pH), O(e-Ta1’2H), 
o ( ~ - T P H  ), respectively; but these small terms must be evaluated carefully because 
they are multiplied by large exponents in (40). To this end (21) is rearranged as 

Pz -P1 e-p(l+A,)’4 71 + Yz ep(l+A,)’/2z Yz -71 e - p ( l + A , ) ’ / 2 Z  +- 
a2 a2 a2 

(a1 +a21 eP(l+Al)’/9f + (P1 +Pz) ep(l+A,)’/2H +(Yl+ 7 2 )  ep(l+A,)llzH 

a2 a2 

; (414  



and cij, i ,  j = 1,2,3, stand for algebraic expressions, which are separated from the 
exponents in the determinants. Thus 

A 3  - 4 A1 - A 2  
'12 = 2Al (1 +h1)1/2' '13 = 2Al (1 + A , ) l / 2 '  

(44 4 

(44 b. c) 

It can be concluded from (42) and (A 23) that the contributions of the second and 
third terms on the right-hand sides of (42) are, as compared with the first term, 
exponentially small, O(e-HTal/*), for p < 1.12 Ta1/2. For p 2 1.12 Ta'/', due to 
(A 22HA 23), these two terms in (42) after substitution in (40) contribute actually 
q e - H  Ta'" ). Consequently, these terms are neglected. After this simplification, and on 
account of (42H43) and (20), (40) yields, again with O(e-HT"1/2) accuracy, 

+2'-e A - A 3  -p( l+A,) ' l*Z 

+2- A2 - 4 e - p ( l + A 3 ) 1 4 ,  (45) 

In a similar manner the integral representation kernels for the other flowfield 

coo 

variables have been reformulated to preserve the O(e-" T a 1 / 2 )  accuracy. 

2.5. Choice of k and other validity considerations 
An essential task in the solution is choosing of k in the expansion (30). To fix it for the 
unbounded configuration (see VU) a principle was put forward, namely, that the 
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Since aJa2 is a known function (see (22)) we actually have a system for three variables: 
a, + a2, /3, +p2 and y1 + yz. The solution, in view of (20), is 

(42 c)  
where ((al/a2) - 1 )  is determined from (22), 

and cij, i ,  j = 1,2,3, stand for algebraic expressions, which are separated from the 
exponents in the determinants. Thus 

(44 4 

(44 b. c) 

It can be concluded from (42) and (A 23) that the contributions of the second and 
third terms on the right-hand sides of (42) are, as compared with the first term, 
exponentially small, O(e-HTa"*), for p < 1.12 Ta1/2. For p 2 1.12 Ta'/', due to 
(A 22HA 23), these two terms in (42) after substitution in (40) contribute actually 
q e - H  Ta'/' ). Consequently, these terms are neglected. After this simplification, and on 
account of (42H43) and (20), (40) yields, again with O(e-HT"l/*) accuracy, 

+2'-e - A 3  -p(l+A*)'l*z 

+2- A 2  - 4 e-p(l+A3)%, 

'3-'2 

(45) 

In a similar manner the integral representation kernels for the other flowfield 
variables have been reformulated to preserve the O(e-" Tal'n) accuracy. 

2.5. Choice of k and other validity considerations 
An essential task in the solution is choosing of k in the expansion (30). To fix it for the 
unbounded configuration (see VU) a principle was put forward, namely, that the 
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pressure distribution on the disk, P(r,  z = 0), has the same singularity a t  r ir 1 as in the 
non-rotational case in which (see Ray 1936): 

for r < 1. 
4 1  J,(rp) sinp dp = - 
x (1 - r y  

The singularity originates from the geometric configuration, i.e. the edge of the disk. 
In the infinitesimally small vicinity of the edge the flow-field structure (not the 
amplitude) must be determined by the edge, the effect of rotation (represented by Ta) 
being not of primary importance because the Coriolis terms are there much smaller 
than the viscous shear and the pressure gradient. It is this consideration that leads to 
the conclusion that, from the physical point of view, the correct value of k in the 
unbounded case is i, independent of Ta. 

The pressure distribution in the disk plane z = 0, for the present case, in view of ( 1  5 ) ,  
(20) and (36) results in the same formula as in the unbounded case: 

but nowfdepends on H. Extending the previous consideration we claim that the type 
of singularity cannot be influenced by the bounding walls, but rather is determined by 
the local near-edge balance. In view of this argument, and since it was proved in VU 
that the required type of singularity in (47) is provided by k = i, in (30) we have to 
take the same k .  

The evident considerations in choosing k are the provision of: convergence of the 
integrals in (33); existence of the solution for the infinite linear system (31)-(32); 
convergence of (30) for any p. 

Consider now the kernel function G", and denote by the subscript 00 the unbounded 
case values. It has been shown in VU that G", can be represented as G",(p) = G,(s) /p ,  
where s = 4Ta2/p4, and that 

(48) 

From (34)-(37) and (22), it can be concluded that 6(p) = G(s; H)/p and that for any 
finite H 

(49) 

and in particular, in view of (38) which is correct asymptotically along with (24) for 
p % Tall2, 

Combining two last results one has 

0 < 1 -G,(s) = O(S). 

0 < G(s; H )  < G,(s) < 1, 

G,(s) - G(s; H )  < O(e-pH) for s +- 0. (50) 

1 - G(s; H )  = O(s) for s --f 0. (51) 

On account of the last formula it can be concluded from (33) that the best rate of 
convergence for L n . ,  is attained by k = i. Whereas, following Kantorovich & 
Krylov (1964, chapter 1) we verified that the 'generalized result' of Koch is applicable 
to (31)-(32) with k = a, for any Ta. Consequently, the solution a ,  is unique and can 
be obtained as a limit of the solutions for truncated systems of N equations with N 
variables as N +  00. Fast convergence of a ,  was observed numerically. 

Another concern is the global validity of the process of solving the dual-integral 
equation in view of the errors introduced at an earlier stage by the approximate 
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H 

FIGURE 2. Reduced drag vs. H in a short container, present theory. (Do = $tTu3'*.) 

asymptotic solution of the system (21). We estimated that the effect of these errors on 
the kernel is on the margin of the resolution of the double-precision calculations in 
the range of Tu and H used here. The same order of magnitude of these errors is kept 
for the coefficients (33)  of the linear system (31)-(32). The computations performed 
showed that the truncated linear systems (3 lb(32) are well-conditioned, thus the error 
in the resulting a,,, is also small, and therefore the accuracy of the expansion (30) of the 
solution function f ( p )  is practically unaffected by the approximate asymptotic solution 
of the system (21). Finally, we notice that the accuracy of a,, see (34), and of the 
integrands in ( l l H 1 3 )  (after reformulations like that of (40)) is also kept at 

). o ( ~ - H  Ta"' 

Upon reviewing all these stages of the solution process, we conclude that the 
procedure used in this work is valid and reliable for the treated range of parameters. 
The dominant inaccuracies in the final results are contributed by the unavoidable 
truncation of the expansion (30) and by the numerical evaluation of the integrals. 

The calculation of the drag for k = a results in the same formula as for unbounded 
case (denoting by T and by B the upper and lower flow regions): 

D = 27t [P'(z = 0) - PB(z = O ) ]  r dr = 4 ( 2 ~ ) " ~  a,. J 
Some results are presented below. 
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3. Results for small and moderate H 
For large Ta and non-large H ,  as specified later, the flow field above (and below) the 

body can be envisaged as a quite simple almost inviscid 'core', in which P, 11, v are z- 
independent, embedded in horizontal Ekman layers and vertical Stewartson layers 
(Moore & Saffman 1968, 1969). A sharper consideration, see below, reveals the 
following two points. First, this simple structure appears when the inner Stewartson 
layer is very thin, i.e. (H/Ta)'13 -4 1 (say, H < Ta/lOOO). Secondly, in this asymptotic 
range we actually can still distinguish between three different cases : the geostrophic, 
quasi-geostrophic and Ekman-free quasi-geostrophic approximations, which cor- 
respond to very small, moderately small and O(1) thickness of the outer Stewartson 
layer (= e, see below). In the geostrophic approximation the radial volume transport 
in the core, uH, is assumed o( 1) and afterwards neglected, but in the quasi-geostrophic 
flow the contribution of uH is accounted for as an O( 1) term. The contribution of the 
Ekman layers to the radial volume transport changes from dominant to unimportant 
from the first to the last case. Sharper distinctions between these ranges are given 
below. 

In the simplest 'short container' model the core is dominated by the geostrophic 
(inviscid) balance, i.e. the radial Coriolis component - 211 is counteracted by the 
pressure gradient -dP/dr and the azimuthal Coriolis term 214 vanishes. Consequently, 
there is no radial mass flow in the core, and the geostrophic swirl velocity in the core 
is readily obtained by the requirement that the Ekman layers perform the entire radial 
mass transport produced by the axial advance of the body; for a disk this yields (see, 
for instance, Ungarish 1993, $3.8, and Appendix B below) 

(53) 
Subsequent use of the geostrophic balance - 2w, r = - dP/dr and of (52) gives the drag 
of the geostrophic core for a disk as 

w, = -1 1TaI/2. 

Do = ;xTa3I2. (54) 
Hereafter, the subscript 0 denotes the geostrophic result; in particular, Do is the drag 
obtained under the assumption that H/Ta'12 + 0 so that the geostrophic domain covers 
the entire disk. By this method Moore & Saffman (1968) obtained the geostrophic drag 
on a rising sphere as Do = (43n/105) Ta312. (On the spherical particle the Ekman layers 
become 'inclined' as r approaches 1, hence thicker and more efficient for mass 
transport; therefore w, decreases with r and the drag is smaller than on a disk.) 

Let us compare the presently obtained 'exact' result for the drag, D,  see (52), with 
the predictions of Moore & Saffman's type of approximation, Do, for different values 
of H and Tu. In figure 2 values of DID, us. Hare displayed for Tu = 1600,4000,10000 
and 0.5 < H < 20. As can be easily seen the exact result for drag is close to Do only if 
H does not increase beyond the value of 1-2. For larger H the ratio DID, decreases 
fast with increase of H .  Thus as H reaches 5 ,  although H/Ta'" is as small as 0.05 for 
Ta = 10000, the ratio D / D ,  drops to 0.7;  as H reaches 20 and H/Ta1I2 = 0.2 for the 
same value of Ta = 10000, D / D ,  < 0.5. So one can judge how narrow in practice is the 
range of applicability of the asymptotic result Do even for Ta as big as 10000. 

We emphasize that both D and Do are outcomes of the linear theory (i.e. the 
Ro = 0 limit). We attempt to explain the discrepancy between them. The fact that D is 
smaller than Do can be readily justified. We recall that in the outer Stewartson layer, 
of typical thickness 

E = (iH/Ta1IZ)'I2, ( 5 5 )  
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see Moore & Saffman (1969) and Appendix B, the swirl velocity decays exponentially 
from to,, to zero. Consequently, the ring of thickness E near the disk’s edge contributes 
to the drag significantly less than assumed for D,, i.e. we can expect that DID,, = 
1 -O(E) .  This is, qualitatively, in agreement with figure 2. 

The quasi-geostrophic core (plus Ekman layers) model is employed for a quantitative 
verification of this trend. This is obtained by the incorporation of the leading shear 
term in the radial momentum balance of the core, see Appendix B, so that the core is 
able to participate in the radial mass transfer in addition to the Ekman layers; for small 
E this is equivalent to the addition of the outer Stewartson (a) layer to the geostrophic 
core. (This extension of the geostrophic core model is not difficult because the 2- 

independence of 1 4 , u  and P outside the Ekman layers remains valid, and the subsidiary 
boundary condition u(r = 1, z )  = 0 to the leading order is evident in the z-symmetric 
geometry.) This improved, quasi-geostrophic core approximation, yields, for 
0’ < z < H - ,  

and (57) 

To understand the trends introduced by the parameter H ,  via the combination E ,  we 
approximate the foregoing results for small and large values of E .  

For E < 1 we obtain 

D z D,(1-4~). 
And for E > 1 we obtain 

1 1 T a  r .  o z w,,-(l - r2)  = ---(1 - r 2 ) ;  
8e2 8 H  u z 2 H ,  

x T n  
D z - T a - - .  

24 H 

Here, again, the subscript 0 indicates the geostrophic model in which the shear outside 
the Ekman layers was omitted, i.e. the assumption C--f 0, see (53H54). 

It is worth mentioning that the approximations (61)-(62) actually represent a special 
physical situation: the Ekman layers do not contribute to the motion and the entire 
radial mass transport is performed in the core by the 2nurH term. This is the Ekman- 
free quasi-geostrophic case. For E > I the difference between this and the full quasi- 
geostrophic model is less than (6/e2) YO in drag and less than (12/2) YO in swirl velocity. 
Moreover, we note that (62) and (61) coincide with the leading term in Hocking et al. 
(1979, equations (5.3) and (5.4)), corresponding results obtained for the lower limit of 
the ‘long container’ analysis. This overlap of these two different approaches 
strengthens the reliability of the ‘short container’ theory. in the enhanced quasi- 
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geostrophic form; furthermore, the 'long container' theory is apparently valid for 
H/Ta'/' > 1 (not just H/Ta'l* 9 1). 

In view of the insight supplied by (60) and (62) the behaviour observed in figure 2 
is no longer surprising. However, although (57) gives the correct trend, it turns out, 
from comparisons with exact solutions, see table 1 in Appendix B, that its accuracy in 
typical practical cases is low. This is because the H ,  Ta range of applicability of the 
quasi-geostrophic drag is determined by two requirements: (a) the omitted inner 
Stewartson layer is very thin, (H/TLZ) ' '~  < 1 (say, H < lO-'Ta), and (b)  the outer 
Stewartson layer (or domain) is much thicker, (H/Ta)'/3/c: 4 1 (say, H > 106Ta-'/*). 
The concurrent fulfillment of (a) and (b) is theoretically possible (for, say, Ta > lo6) 
but is unattainable in known experimental configurations, and even out of the range 
of the present computations. In practice one or both conditions are compromised (not 
completely violated) but the drag is very sensitive to errors near the rim and the 
accuracy of the improvement over the geostrophic model is lost when conditions (a) 
and (b) are not strictly satisfied. The conclusion is that 'exact' solutions are necessary 
for obtaining the linear drag in a 'short container' configuration with a tolerable error; 
this is practically relevant because really large values of Ta seem unattainable in 
industrial and experimental devices. 

Indeed, consider the experiments of Maxworthy (1 968) ; he used spherical particles 
of two diameters and covered different values of Ta and Ro, for H z 5 and 10. His 
results are displayed in figure 3 as drag us. Ro To'/'. We see that the measured values 
are about 20% less than Moore & Saffman's Do when Ro Ta2/3 < 1. This discrepancy 
with theory has been attributed to the influence of unavoidable nonlinear effects, i.e. 
not sufficiently small Ro. An order-of-magnitude estimate of the contribution of the 
convection terms in the geostrophic core region yields the condition Ro < Ta-'/2. 
However, the estimate of Moore & Saffman ( 1  968), based on the flow in the Stewartson 
shear layers is much more restrictive: Ro < Ta-5/7 Kj17 (z Ta-5/7). The fact that the 
experimental points of Maxworthy do not satisfy the latter restriction led to the above- 
mentioned explanation of the drag discrepancy. 

Although this consideration is formally correct, we claim that it is over-restrictive. 
The relative contribution of the narrow shear layers to the drag is much smaller than 
that of the core. Hence we suggest that a more practical criterion for the applicability 
of the linear theory is one demanding that the convection in the core is small, Ro 4 

while that in the shear layers does not exceed O(1). The combination can be 
expressed as Ro < Ta-5/7. 

This argument brings us to the idea that, for the experimental points with Ro < 
at least, the departure of the measured drag from Do is not caused by 

the convective terms. Instead, we suggest that the influence of H on the system could 
cause the discrepancy (in the experiments 0.1 < F < 0.3) and attempt to verify this 
explanation via a comparison based on the present linear outcomes with Maxworthy's 
experiments. This is not a straightforward task since (a)  the particle geometry is 
different, and (b)  the reported experimental points are not labelled with the appropriate 
values of H .  To proceed, we assume that D / D o  for disk and sphere are close. 
For Ta = 26000 (the maximal available value) the experimental results are in the 
range D I D ,  = 0.87-0.90; on the other hand, the present theory for H = 5 predicts 
DID, = 0.89. It is likely that these experiments represent exactly this value of H 
(the reported experimental error is 2.5 O h ) .  For Ta = 25000 two results, 0.90 and 
0.74, are displayed in the experimental points. The appropriate present calculations for 
H = 5 and 10 result in DID, = 0.89 and 0.73. 

Maxworthy also reports significant discrepancies of the swirl velocity in the core 

< 
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FIGURE 3. Drag us. ‘effective Rossby number’, experiments of Maxworthy (1968). 

with the asymptotic value wo. However, using (56) we readily calculate that the ratio 
w(r = O)/wo decreases from 0.997 to 0.73 when 6 changes from 0.1 to 0.3. This is 
consistent with the experimental results (figure 10 of Maxworthy 1968) but the scatter 
is too large for a quantitative comparison. 

In view of all this it seems appropriate to attribute the real departure of the drag in 
these experiments from Do, for smallest Ro and largest Ta, mainly to the influence of 
H (actually, to the non-vanishing c), a possibility which was overlooked. In other 
words, Maxworthy’s (1968) experiments seem to rather confirm the linear theory; the 
nonlinear effects seem to become influential on the drag when Ro Tu”~ > 1 .t 

Consider now some features of the flow field, in particular the behaviour of the 
angular velocity, w, and of the stream function in the meridional plane, y?, with increase 
of H .  It is convenient to introduce the parameter 

S = HITa. (63) 

The exact results show that for large values of Ta, if S is less than about 0.05, the 

7 Investigations performed after the completion of this paper lend further support to this 
conjecture, as well as to the assumption that DID,  for disk and sphere are close in the present range 
of parameters, Ungarish (1995). 
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FIGURE 4. Angular velocities at various values of z at r = 0 for different values of H at 
Tu = 1600. Exact (-) and quasi-geostrophic (---) results. (w,, = -20.) 

variable w in the core is quite r-independent. This is illustrated in figure 4, where it is 
also seen that the 'exact' value of w(r = 0 , z )  is in good agreement with the quasi- 
geostrophic approximation (56). This is a mutual confirmation of the present outcomes 
and of the asymptotic ones. We emphasize that the agreement in w(r = 0) is better than 
for drag. This can be justified, for small E ,  as follows: the quasi-geostrophic model 
misses the details of the $ layer, but the contribution of the 5 layer when ( H / T u ) ' / ~ / E  
is not small is expected to be significant near the rim r = 1 - O(E), from where the major 
drag modifications come, not near the axis r = 0. 

A striking feature of the flow field is the recirculating motion in the inner Stewartson 
(i) layer, predicted by Moore & Saffman (1969). To solve the flow field in this layer 
Moore & Saffman simplified the momentum equations and showed that the 
corresponding solutions are non-unique, fail in the Ekman layer and have a sharp edge 
singularity. To choose the unique solution the principle of minimal singularity of 
velocity of Kutta-Joukowsky type was applied. Under this conjecture, it was found by 
Moore & Saffman that the axial velocity in the $ layer must be O(Tu5/12/H1/'). This 
velocity in the layer of width O[(H/TU)"~] induces a large, O [ ( P T U ) ' / ' ~ ] ,  mass 
circulation, which must be a confined recirculating motion because the mass flux 
induced by the motion of the particle in all the regions of the flow field is no larger than 
O(1). In other words, the leading order-of-magnitude motion in the f layer is 
expected to be an internal recirculation. 

In our 'exact' solution a recirculation was indeed observed, with the following 
features. When H is of order unity, the smallest value of Tu for which recirculation 
arises is Ta z 1000. For a constant value of H the recirculation increases with Ta (see 
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figure 5), as predicted. However, since the maximal attainable computational values 
are Ta = O(lOOO0) this recirculating motion was not really dominant and its exact 
dependency on the quite insensitive Tal/la could not be verified. For the parameters 
investigated here, for fixed value of Ta the recirculation decreases as H increases 
(contrary to the foregoing rough orders-of-magnitude estimations). Thus one can see 
in figure 6 that for Ta = 6400 while H = 1 ,  2 and 4 the recirculating flux is 
approximately I+?,,, = 0.07, though the entire flux in the core, conditionally defined by 
the stream-function value of the bifurcating line increases from 0.7 to 0.8 
approximately. Additional increase of H to 6 brings to a slight decrease of the 
recirculating flux to I+?,,, = 0.06. Further increase of H to 8 and beyond causes a drastic 
reduction to complete cancellation of the recirculation. 

The streamlines in figures 5(b, c )  and 6 have some ‘spikes’ in the lower half of the 
container around r x 0.9, for the following reason. In the geostrophic domain, 
r < 1 -O(s), the axial volume flux is into the Ekman layer on the disk and the axial 
velocity, w, is negative and O( 1). Below the 1 /4 layer, 1 - O(e) < r < 1 - O((H Ta)-’”), 
the disk Ekman layer expels fluid into the core, from where it is ‘sucked’ radially into 
the i layer, see ( 5 8 ) ,  hence w in the lower half of the container becomes positive and 
O(Ta1I4). However, in the 5 layer the net fluid transport is downward and w changes 
sign again. (This is not observed in figure 5 (a) because Ta = 1600 is not sufficiently large 
for a sharp distinction between the shear layers.) 

4. Results for large H 
Figure 7 illustrates the changes of the stream-function contours as H increases from 

O(1) to O(Ta) for a fixed, large Ta. Here the value Ta = 1600 is chosen to facilitate 
comparison with previous unbounded case results (see VU). 

As H increases the vertical shear layers, as expected, thicken; as 6 reaches the value 
of about 0.05 a strong deflection of the near-axis streamlines in the positive radial 
direction upon approaching the disk occurs, and axial variations of the angular 
velocity appear. 

Further increase of 6 to about 0.08 causes a special change of the flow pattern: the 
central zero streamline bifurcates and a zone of recirculation (‘bubble’) over the disk 
appears. This zone first elongates with 6, but as this parameter approaches the value 
0.25 (approximately) the bubble reaches an asymptote: its size and the velocities inside 
attain the values obtained for the unbounded configuration, which depend on Ta only. 
It is worth recalling that the length of the ‘free’ Taylor column in the unbounded 
configuration is 0.051 Ta, hence the appearance of a similar feature at 6 2 0.08 is not 
surprising; however, regarding I+? the container can be considered ‘unbounded ’ if its 
lids are at least five fully developed ‘free’ Taylor columns away from the particle (the 
drag in this particular configuration is nevertheless about 30 YO higher than the 
unbounded result). 

It is not without interest to notice some analogy between the influence of Ta in the 
unbounded case, where the onset of the bubble takes place when Ta reaches the critical 
value 37 and with further increase of Ta the bubble elongates, and the bounded case 
with the analogous parameter 6 and its critical value 0.08. 

The drag results for larger H can be better discussed by considering DID,  for 
various Ta us. 6. Here D ,  denotes the ‘exact’ result for the unbounded configuration, 
as calculated in VU (which coincides with the present calculations in the limit H + 00). 

The typical behaviour can be inferred from figure 8 : essentially, D / D ,  increases with 
FIGURE 5 .  The contour lines of -fi for H = I for Tu values (a) 1600, (6) 6400, (c-) 12800. 
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Ta and decreases with 6; however, for H/Ta  2 0.08 (approximately) the curves for 
different Ta collapse into a single line, F(S), i.e. DID, becomes independent of Ta. 

Here the study of Hocking et af .  (1979) is relevant. It considers the influence of the 
axial boundaries in a long container upon the approximation that the shear associated 
with the derivatives with respect to z (and thus the Ekman layers) can be neglected. 
This should correspond to the present results in the limit Ta + 00 with 6 kept O( 1). The 
corresponding drag is here denoted DHhrw, and for large values of S this drag, denoted 
DZMW, recovers the ‘inviscid’ unbounded case value, (16/3)Ta (derived by Stewartson 
1952). The drag ratio DH”W/DEMW in this model turned out to be a function of 6 only, 
with values given by Hocking et nf. (in table 1 and figure 2). Comparing the drag ratio 
us. 6 of this model with that of the present ‘exact’ solution, see figure 8, we realize that 
they must also coincide for 6 > 0.08, i.e. 

D D H M W  

D H M F , ,  = F(6) for 6 > 0.08. (64) - 

D ,  m 

An important conclusion is as follows. In the long container 6 > 0.08 the drag is 
influenced by two effects: the finite extent of the domain, reproduced by the finite value 
of 6, and the Ekman layers on the disk, reproduced by the finite value of Ta. These 
effects are separated : 

D(Tn,H) = F(H/Ta) x D,(Ta). 
The first factor estimates the influence of the walls without taking account of Ekman 
layers (Hocking et af . ) ,  the second is simply the ‘exact’ drag in an unbounded 
geometry, implicitly accounting for the Ekman layer on the disk (VU). Such a 
separation of effects at large 6 could be anticipated, but the present study points out 
that it actually happens for 6 > 0.08. Moreover, it is easy to conjecture that (65) is valid 
for spherical and spheroidal particles, for which D,( Ta) is provided by Weisenborn 
(1985) and Tanzosh & Stone (1994). This conjecture is significant in drag comparison 
with experiments. 

The major known discrepancy between the linear theory and experiments is in the 
value of the drag on a particle in a long container. Maxworthy (1970), by smoothing 
and extrapolating experimental data, concluded that for a very long container and 
large Ta the experimental drag on a spherical particle is 53% higher than the value 
(16/3) Ta predicted by Stewartson (1952) (this was the only relevant linear-theory 
result available at that time). Hocking et af .  attempted to attribute this discrepancy to 
the finite length of the container used in the experiments (actually, 0.2 < 6 < 0.8). 
They used ‘ raw ’ experimental points and compared with Stewartson’s inviscid drag, 
(3/16) Ta, augmented by F(6); the agreement was poor, although the influence of 
nonlinear effects was estimated to be small. 

Maxworthy and then Barnard & Pritchard (1975) suggested that significant 
contributions to the flow field, including the drag, can be expected from the Ekman 
layers. Now, through the conjectured decoupling of the effects of Ekman layer and the 
axial bounds, expressed in the formula (65), we can improve the comparison of 
Hocking et al. with Maxworthy’s experiments. To this end we use the exact linear drag 
results for a sphere in an unbounded domain, D,(Ta), from Weisenborn or Tanzosh 
& Stone (instead of (3/16)Ta), and superpose the results of Hocking et a f .  
Consequently, for the experimental data verified by Hocking et af . ,  beyond the above- 
mentioned contribution of F(S), we found an additional increase of the theoretical drag 
as follows: by about 12% for the points with Ta = 447, 6 x 0.25 and by about 28% 
for the points with Ta = 117, 6 z 0.8 (cf. points (a)  and (k) in figure 2 of Hocking 

(65) 

FIGURE 6. The contour lines of -$ for Ta = 6400 for H values (a) 2, (b)  4, (c) 6, ( d )  8. 
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et 01.). However, the basic disagreement reported by Hocking et al. remains. It seems 
that the quite complete linear theory within the stable flow framework is unable to 
explain the essential discrepancy with these experiments. 

5. Concluding remarks 
The present 'exact' solution of the full linear equations facilitates the analysis of the 

flow field past a rising disk in rotating, axially bounded, fluid for the whole range of 
Taylor number, Ta, and arbitrary distance from the disk to the walls, H .  A noted 
restriction is that the disk is supposed to be at equal distance from both walls. 
However, no significant departures from the present features are expected for a 
moderate ( & 30 YO of H ,  say) off-middle particle position : the simplified analysis for the 
short cylinder in Appendix B and for the long container by Hocking et al. (1979) (for 
H / T a  > 0.1) indicate that the drag varies by a few percent only when the particle 
moves in the central third of the container; the minimum drag is in the middle position. 

The method of dual-integral equations, attempted and verified in VU for the 
solution of the boundary value problem based on the full linear equations of motion 
in the unbounded configuration, has been utilized here again for the bounded 
container. The principle formulated in VU regarding the choice of the undetermined 
parameter k in Tranter's method of solution of these equations has been also 
successfully employed in the present case, which gives additional credence to the 
underlying idea. 

Attention was focused on large but finite Ta, and the full range of half-container 
height, H ,  (i.e. small, moderate and large with respect to a given Ta) was covered. The 
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asymptotic investigations of Moore & Saffman (1968, 1969) and of Hocking et al. 
(1979) are approached by the present solution as Ta increases. The quasi-geostrophic 
model elaborated here improves the applicability of - and bridges the gap between .- 
these models. However, in practical solutions (say, Ta = O( 103bO( lo5)) quantitative 
differences appear between asymptotical and exact results. The parameters E = 
(~H/Ta ' /2 ) ' /2  and S = H/Ta  are important. 

For small H (actually, small P3) the flow-field features (in particular, the angular 
velocity on the axis) are described well by the asymptotic short-container model, but 
even for Ta = 10000 and H = 1 (S1 l3  = 0.05, E = 0.07) the geostrophic drag obtained 
by the method of Moore & Saffman (1968) overestimates by more than 10%. In 
general, the asymptotic drag predictions cannot be accurate when both S113 and e are 
moderately small. The recirculation in the inner Stewartson layer, predicted by Moore 
& Saffman (1969), was qualitatively confirmed here, but the quantitative details (e.g. 
whether it is really of order Ta"") were beyond the resolution of the present 
computations. 

As H increases, the angular velocity in the core and the drag decrease, and the 
streamline structure begins to be modified. As H increases from O(Ta'/') to O.O8Ta, IQI 
decreases from U(Ta1/2) to 0(1), and the drag from U(Ta Tall2) to O(Ta). 

As S reaches the value 0.08 the meridional flow field qualitatively changes: the 
recirculation 'bubble' appears, as in the unbounded configuration when Ta > 37.  In 
other words, the classic 'free' Taylor column begins to form for S > 0.08. With growth 
of S the bubble lengthens and widens, and when S > 0.25 (approximately) the fully 
developed 'free' Taylor column is recovered. 

Relevant global conclusions of the present disk-particle solution could be 
heuristically extended to a spherical particle. The details of this extension are worthy 
of investigation, and it seems that the methodology used by Tanzosh & Stone (1994) 
for spherical and spheroidal particles in the unbounded configuration can be the 
appropriate means for this purpose. We note in passing that in the short container the 
geostrophic drag on a disk is about 22% larger than on a sphere, but in the long 
container the drag is slightly smaller on a disk than on a sphere. 

In particular, additional light was thrown on experimental verifications of the linear- 
theory drag predictions performed with spherical particles. For a short container the 
results of Maxworthy (1968) for small Ro, although about 20% lower than the 
asymptotic geostrophic value of Moore & Saffman (1968) turn out to be consistent 
with the present analysis, in contrast with previous explanations which attributed the 
disagreement mainly to the influence of inertia terms. 

On the other hand, for the long container, although the present study apparently 
incorporates all the leading effects that can be covered by the linear theory, in 
particular the finite Ta (Ekman layers) and the influence of the top and bottom walls, 
the intriguing discrepancy of about 53 YO in drag with Maxworthy's (1970) 
experimentally based conclusion remains. This fact, and the availability of the present 
theory that predicts the drag and velocity field as functions of the measurable H and 
Ta (not for asymptotic limits of these parameters as before), suggest the need - and 
promise efficient design and interpretation - of additional experiments. 

The research was partially supported by the Fund for the Promotion of Research at 
the Technion, and D.V. was partially supported by the Bat Sheva de Rothschild 
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Appendix A. Approximations in the dual-integral equations 

also essential in the asymptotic solution of (21), are developed. 

the characteristic equation 

Here, for p 2 0 and HTa1/2 % 1, some approximations used in the text, which are 

First, consider the behaviour of the arguments (1 +A,)1/2pH. The A, are the roots of 

A 3 + s A + s  = 0; (A 1) 

where s = 4Ta2/p4. (A 2) 

Its three roots, by Cardano's formula, are 

A, = El + E2,  

A, = - ~ E ~ + E , ) + ~ ~ ~ ~ ( E , - E ~ ) ,  
A, = - ~ ( ~ ~ + ~ ~ ) - i i 1 / 3 ( ~ ~ - e ~ ) ,  

where 

s2 1/2 1/3 .=(---(".-) S ) . 
2 27 4 

The asymptotics for and e2 for both small and large p are readily produced. Thus 
for p -+ 0, i.e. s --f 00, the series expansion gives 

3 d 3  27 1 1/3 

(A 8) 
s'/2 1 4 3  1 
d 3  2 2s 

= +-+-+ O(s-3/". 

Analogously, 
e2= -s1/'/d3-i- 1 /3 /8~ ' /~+  1/2~+O(s-~/'). 

Hence, 

and 

El + E2 = - 1 + 1 /s + O(s-312) 

$(El - E 2 )  = s'/2/d3 + O(s-'/2). 

In view of (A 3 H A  5) ,  (A 10) and (A 1 l), for p+O (s-t 00) the asymptotics are 

(1 + Al)'/2 = (1 /s + O(s-3/2))1/2 = s-1/2 + O( 1 /s) (A 12) 
and 

Now, in view of (A 2) and (A 12), the absolute values of exponents in (21) can be 
estimated : 
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FIGURE 9. The functions (a) (1 +A,)1/2(p/Tu1'2), (6) Re((1 +A2)1'2(p/Ta1/2)} and (c) the difference 
(b) - (a)  us. ~ / T U ' / ~  (with a portion of (c) enlarged). Recall that p/Ta'/* = d\/2~-'/~. 

i.e. they are functions of s or p/Ta'l2 only and 

( 1  + Al)'/2pH = T ~ ' / ~ H ( 2 / 2 s - ~ / ~  + O(S-~/~));  (A 15)  

since A, and A, are complex conjugate, on the basis of (A 13) 

Re((1 +h , )1 /2pH)  = Re((1 +h,) ' / ,pH) = Ta'I2H(1 +~s- '~z++(l /s)) .  (A 16) 

It is easily seen from the two last equations that 

lim (( 1 + Al)' /2pH) = 0, 
P - 4  

lim Re(( 1 + A2)1/2pH) = Ta'/, H and Re(( 1 + h2)'/2pH) >, Tall2 H for - * l .  
0-0 Tall2 

(A 18) 

As indicated by numerical calculations represented in figure 9, the last inequality can 
be extended for arbitrary value of p :  

P - 2 Tall2 H .  
Tall2 Re(( 1 + A2) lJ2pH)  = Re(( 1 + h3)1/2pH)  = Tall2 HRe(( 1 + 

(A 19) 
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Additional useful numerical outcomes are 

M .  Ungarish and D. Vedensky 

(1 + h,)’/’pH 2 $Ta’/’ H if p/Ta”2 3 1.12, (A 20) 

Re((1 +h2)”2pH)-(l +h, )”2pH 3 Ta’l’H if p/Ta’/2 < 1.12. (A 21) 

Next, in view of (A 19), we obtain the following estimates, for any p >, 0: 

R~(~P(I+A~)”*H) 2 e T a l / ’ H  7 (A 22a) 

)) 

(A 22 b) 

(A 22c) 

sinh ( p (  1 + A2)1/2 H )  = leP(1+Az)’’’ff( 1 -e-2p(1+A?)1/2H) = 1 P(l+A,)”*H( 1 + O(e-2Ta1’*H 
2 2e 

cosh(p(1 +A2)’/’ H )  = $eP(l+A,)’/*H(l +e-2~(l+A2)~/~H) = ~eP(l+A~)”’H(1 +O(e-ZTa’”H)). 

Results (A 22) are also valid when the subscript 2 is replaced by 3. 
In view of (A 20)-(A 21) 

sinh ( p (  1 +A,)’/’ H )  z cosh ( p (  1 + A1)l/’ H )  = $P(1+AJ1’2H( 1 + O(e-Ta”’H 11, (A 2 3 4  

~ P ( ~ + A I ) ” ‘ H  3 ei/2Tf~”~H if p/Ta1/2 3 1.12; (A 23 b) 

eP(l+Al)”’H < ..e p(l+A,)l”He-Tal”H if p/Ta“2 < 1.12; (A 23c) 

In the limit p --;r co, in view of (A 2 H A  7). Ai --f 0 and for i = 1,2,3 we get 

Re(( 1 + A,)”2pH) = p H (  1 + o( 1)). (A 24) 

In the range of p/Tu’l‘ % 1 (A 22) and (A 23) can be strengthened, namely 

sinh @( 1 +At)’/’ H) z cosh @( 1 + Ai )1 /2H)  = + + l + A i ) l / p H  (1 + O(e-PH)). (A 25) 

The proof of (22)-(24) is based on the preceding estimates. The details may be obtained 
from the authors or JFM editorial office. 

Appendix B. Some approximate results for short containers 
B. 1. The s1ighrl.v oiscous ‘ quasi-geostrophic’ core 

The geostrophic core approximation discards the mass transport in the region 
O+ < z < H- outside the Ekman layers; the purpose here is to incorporate this effect, 
which is essential in the ‘outer’ (:) Stewartson layer at least. As remarked in Moore 
& Saffman (1969, $7), the ‘inviscid’ geostrophic core and the ‘outer’ ( f )  Stewartson 
layer can be efficiently treated without a prior; asymptotic separation into two 
regions. In this combined region, to leading order in Tu-’l2 the variables u, c,  P are 
:-independent, and the governing equations are 

-2Tavc = -dP/dr ,  (B 1) 

d l d  
dr r dr 

2Tauc = ---rtf, 

I d  c?wC --rut+- = 0, 
r dr c?z 
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where the superscript c means 'core'. The behaviour of the term on the right-hand side 
in the azimuthal momentum balance (B 2) is of interest: when it vanishes (or is 
discarded) the inviscid geostrophic balance is recovered by the system (B 1 H B  4). We 
also note that by simplifying this term to d2v/dr2 we obtain the i boundary layer 
equations. 

We assume that the f layer is very thin. 
The above-mentioned core is matched to the boundaries by Ekman layers. 

Ekman layer carries the volume flux 

cc 
@ = Ta-1/2/o cd&' = -a T Q - ' / ~ ( V ~ - ~ ~ ) ,  

The 

where u" is the radial velocity correction in the layer, &' is the local distance stretched by 
Tall2, and the superscript b denotes the appropriate boundary (top, bottom or disk); 
here ub = 0. 

A single equation for ve can be obtained as follows. First, we note that global 
continuity in a cylindrical control volume of radius r (< l), from disk to top wall, reads 

(B 6) 

where the right-hand side expresses the rate of volume reduction due to the axial 
motion of the disk. Next, by substituting (B 2) and (B 5 )  we obtain 

2 x r [ u c ~ +  Psk + p o p ]  = xr2 

where = (a H Ta-1/2)1/2, (B 8)  

and subject to the boundary condition 

dv 
- ( r  = 0) = v(r = 1) = 0; 
dr  

hereafter the superscript c is dropped. 
The solution is 

In the downstream region z < 0 the same u but with opposite sign prevails. 
In view of (52), (B 1) and (B lo), the drag on the disk is 

x 
(uT-vB)r2dr=-2nTa 2ur2dr = - T u ~ / ~  

2 

For E + 1 the leading asymptotic terms in (B lo), (B 1 1 )  give 

for r 4 6 ;  

D = an Ta3/'[ 1 - 4 4  1 -I 41. (B 13) 

Evidently, for e + O  the 'inviscid' geostrophic core results, v = $-Ta'j2 and Do = 
ax Ta3/', are recovered, and the i layer near r = 1 is seen in (B 12). 

Result (B 1 l), although indicative, is less useful than anticipated: comparisons with 
the exact solution indicate that the quasi-geostrophic correction to Do is not accurate 
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Ta H DID,, exact DID,,  (B 1 1 )  ~ 3 / ~  &1/3 E 

I O? 1 0.126 0.91 0.59 0.8 0.10 
5 0.282 0.62 0.34 0.6 0.17 
8 0.356 0.53 0.22 0.6 0.20 

104 0.5 0.050 0.94 0.81 0.8 0.04 
1 0.07 1 0.89 0.75 0.7 0.05 
5 0.158 0.69 0.51 0.5 0.08 
8 0.200 0.61 0.43 0.5 0.09 

15 0.274 0.49 0.31 0.4 0.11 
50 0.500 0.27 0.13 0.3 0.17 

100 0.707 0.18 0.07 0.3 0.22 

2.6 104 0.5 0.039 0.92 0.85 0.7 0.03 
1 0.056 0.88 0.80 0.6 0.03 
2 0.079 0.82 0.72 0.5 0.04 
3 0.096 0.78 0.67 0.5 0.05 
4 0.111 0.75 0.63 0.5 0.05 
5 0.125 0.72 0.59 0.5 0.06 
8 0.158 0.65 0.51 0.4 0.07 

10 0.176 0.61 0.47 0.4 0.07 
15 0.216 0.54 0.40 0.4 0.08 

TABLE 1. Influence of E and other parameters on the drag: B113 = (H/Ta)’13 estimates the thickness of 
the inner Stewartson layer; e / F 3  estimates the ratio of the thickness of the outer and inner 
Stewartson layers. 

in many cases of interest, see table 1. Indeed, the asymptotic model implies the quite 
obvious requirement that the inner 5 layer should be much thinner than the outer 
Stewartson layer, i.e. S1/3/e x (ZPTU)-’”~ 4 1. Otherwise the $layer pressure 
correction near the rim may influence the drag by an amount commensurate with the 
contribution of the a layer. In the range under investigation, and actually for any 
practically attainable configuration, (WTu)-’”2 is not small. This is illustrated in table 
1 :  it turns out that the ratio P 3 / e  is not small and/or the 5 layer is quite thick for 
all the tested combinations of Tu, H .  These results also indicate that the range of 
parameters covered by the ‘short container’ asymptotic model is practically 
unattainable. 

The radial velocity in the upper region is readily obtained from (B 6),  upon 
substituting (B 5) and (B lo), as 

u =-1 1 1 ( r / 4  
2HZ,( 1 /€, . 

Equation (B 7) shows that the ratio of -0 to the term on the right-hand side gives 
the relative amount of mass transported by the Ekman layers. For E = 1 this ratio 
equals 0.12,0.09,0.04 at r = 0.01,0.5,0.8, respectively; for larger E the corresponding 
ratios are about 2 times smaller. 

B.2. Disk in ofl-middle position 
Let the distances of the disk from the top and bottom walls be H ,  and H,, respectively, 
with H ,  + H ,  = 2H, and the index 0 denote the outer region, r > 1, see figure 1.  

The asymmetry H ,  =I= H ,  with respect to z causes different thicknesses of the vertical 
shear regions, and rotation wdisk of the disk. We attempt to estimate the influence of 
these effects on the drag; for small values of E we anticipate 

(B 15) D x Do[ 1 - 44(5P)], 
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cf. (B 13), where 

Following (B 8) we define 
W = H , / H ,  and $(1)= 1. (B 16) 

E, = (HT/H)lI2E;  eB = ( H s / H ) ' / 2 ~ ;  c0 = 2 / 2 ~ .  (B 17) 
For simplicity of analysis we assume that E 6 1, hence the vertical shear layers at top, 

bottom and outer side of the disk are thin. The swirl velocities are expected to be 

wT(r)  = wf[ 1 - A ,  exp (( - 1 + r ) / ~ , ) ] ,  
wB(r) = w,B[ 1 - A ,  exp (( - 1 + r)/~,)], 
wo(r) = B exp (( 1 - r)/eo), 

(B 18) 
(B 19) 
(B 20) 

where wf, o:, A,, A,, B are constants. This flow field must satisfy: (a) global volume 
transport requirements; (b) the condition of zero torque on disk, and (c) the matching 
conditions (Moore & Saffman 1969): 

wT(r = 1) = wB(r = 1) = wo(r = 1);  (B 21) 
(dldr) [H, wT(r) + HE wB(r) -2Hoo(r)] = 0. (B 22) 

In the inviscid core region the volume transport is performed by the Ekman layers. 

2xr2[ - iTa-1'2 (wT 0 - w d i s k )  - .!Ja-'/2 w,'] = xr2 ; (B 23) 
2nr2[ _1Ta-1/2(wB-wdisk)_~Ta-1/2":] 2 0 = -nr2. (B 24) 

0,' + w:, (B 25) 
"0 2 w: = iTa-'/2 + j!pdfsk. (B 26) 

= 
Ta-1/2r(wT-udfsk). Integrating (2xr2dr)7,, from 0 to 1 on both sides of the disk we 
obtain, approximately, the torque-free disk condition as 

(B 27) 
In view of (B 25) we get 

(B 28) 
since A,, A, are O(1), wdisk = O(eTa1/2) = O(TU'/~). 

(B 28) yields, to leading order in E ,  

In view of (B S), (B 18), and (B 19) this is expressed as 

This readily gives @disk = 

T = - LTa-1/2 + $,,diSk. 

The torque on the disk comes from the shear in the Ekman layer, e.g. 

i(~,' + w," - 2wdisk) - (u: A ,  6 ,  +w: A ,  E,) = 0. 

- 4 ( W c  A ,  BT +W;  A ,  B E ) ;  
Wdisk = 

Substituting (B 26) and (B 18)-(B 20) in (B 21k(B 22) and taking into account 

Now we proceed to the calculation of the drag, see (B 1 1), 

D = - 2xTa [wT(r) - wB(r)] r3 dr i: 
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where 
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As expected, $(W) = $(I/W). The maximum of $(W) is 1 at 9? = 1 and the minimum 
is \/2/4 at W = 0 and W+ co; for 0.5 < B < 2 the values of @(.@) deviate from 1 by 
at most 3.2%. 
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